
IRM Software Overview
Robert Goodwin

Wed, Nov 16, 1994

Introduction
Internet Rack Monitor software is an evolution of that used in several front

end control systems at Fermilab and elsewhere. This latest version runs on the
MVME162-22 cpu board with MC68040 cpu, 4MB dynamic ram, 0.5MB static
ram, 1MB flash memory, ethernet interface, and support for up to four
IndustryPack daughter boards. The latter allows connection to I/O signals via
ribbon cables to digital and analog interface boards mounted inside the IRM
chassis. The ethernet interface allows network connection and supports widely-
used Internet protocols that allow data request and setting access as well as
alarm reporting, all based upon the UDP (User Datagram Protocol) transport
layer.

Local database
The nonvolatile memory houses a number of configuration tables that

characterize each station’s installation. Included in these tables is a local
database for analog channels and digital bits. It includes text and scale factors
used by local control applications for scaling as well as alarms reporting. It also
houses down loaded code for local and page applications in a memory-resident
file system. Local applications are used for closed loop support and for system
extensions such as TFTP protocol server support. Page applications support a
virtual console access to the system for local control, configuration and
diagnostics use. The system code is acquired from a server station by the prom-
based 162bug via the TFTP protocol at boot time.

Cyclic data pool activities
IRM software is a collection of tasks that use the pSOS operating system

kernel. The primary activities of the system are synchronized by an external
timing signal, which may be an external trigger input, or it may be decoded from
a “Tevatron clock” signal. (In the absence of a synchronizing signal at 10Hz or
15Hz, the system operates asynchronously at 12.5Hz.) At the beginning of each
cycle, the data pool is refreshed according to instructions in the nonvolatile Data
Access Table that are interpreted at the start of each cycle. Also, all active local
applications are run to operate on the fresh data for closed loop jobs or more
complex data pool updates. (A local application is compiled and downloaded
separately from the system code itself.) After the data pool is refreshed, all
active data requests having replies that are due on the present cycle are fulfilled
and delivered to network requesters. Alarm scanning is performed on all analog
channels and binary status bits that are enabled for such monitoring. Finally, the
currently active page application is run. So, the data pool is accessed by local
application activities, replies to data requests, alarm scanning, and the current
page application.

Synchronization
The Tevatron clock signal can carry up to 256 events. The IndustryPack

digital board decodes each event and interrupts the cpu, allowing time-stamping
of each event. Status bits derived from this event activity are part of the data
pool and can be used to synchronize data pool updating and local application



IRM Software Overview p. 2
data requests for up-to-1000Hz data available from the IndustryPack analog
board; i.e., one can plot 300Hz data, say, with time stamps measured from a
selected clock event.

Data request protocols
Due to the evolution of this front end system, three different data request

protocols are supported. The original request protocol is called Classic; it is used
by stations that communicate among themselves as well as by the Macintosh-
based parameter page application developed by Bob Peters. A second protocol
was designed by the Fermilab D0 detector people to fulfill their specific needs.
The third is that used by the Acnet control system at Fermilab.

Data server logic is included for both Classic and Acnet request protocols.
This allows one station (the server) to be targeted by a requesting host with a
request for data from other stations, in which the server station forwards the
request via multicasting to the other stations and compiles their individual
responses into the single reply it delivers to the requesting host. The purpose of
this logic is to reduce the number of replies a host might have to endure, in
response to a request for data from many different stations. The server station
can do this efficiently because of the built-in logic in each station that combines
multiple replies—due on the same cycle to the same destination—into a single
network datagram. For example, suppose three hosts make requests for data
from the same 10 stations at 10Hz, and each host uses the same server node. The
server node will receive 10 composite replies each 10Hz cycle, and it will send 3
replies to the three hosts, for a total of 130 frames/second, thus requiring each
host to receive only 10 frames/sec. Without the server station, each host would
have to receive 100 frames/sec.

Alarm handling
Alarm scanning is performed on all selected analog channels and digital

bits each operating cycle, as mentioned above. When a change in alarm state
(good-bad or bad-good) is detected, an alarm message is queued to the network
to share this news with the outside world. Such alarm messages can be multicast,
so that multiple interested hosts can learn of them. A local application can also
sample such alarm messages and reformat them to target a designated host
alarm server, as is required in the Acnet system. As a local diagnostic, such alarm
messages can be encoded for display or printout via the station’s serial port,
including both locally-generated ones as well as those received by that station
listening to the alarm multicast address.

Diagnostics
Several diagnostic features are included in the IRM design. The digital

IndustryPack board provides test signals that are driven by interrupt and task
activities. The interrupt signals are also displayed on 8 LEDs. These signals can
be connected to a logic analyzer to capture timing and related program activities
of the station’s operation.

A suite of page applications is available to perform various diagnostic
displays via the virtual console support.

1: Display areas of memory from any station(s), with 10Hz updating. Clear



IRM Software Overview p. 3
blocks of memory, or copy them from one station to another.

2: Display Tevatron clock events with 10Hz updating. Capture and display
network frame activity, providing a kind of built-in “poor man’s sniffer”, in
which the timing of frame reception or transmission processing is shown to 1
ms resolution within the time-of-day-specified operating cycle.

3: A network client page allows exercising the standard IP ping and UDP
echo tests, as well as Network Time Protocol and Domain Name Service
queries.

4: A list of kernel-allocated blocks of dynamic memory in the local station
can be displayed and updated continuously.

5: All three data request protocols can be exercised in a test mode to verify
particular cases and measure response times.

6: A station survey page allows listing several characteristics of a list of
stations, including system code version, amount of free dynamic memory,
time since last reset, number of allocated channels and bits, number of active
data requests, and operating cycle time.

7: A log of recent settings performed in a given station can be displayed in
a similar fashion to that of recent network frame activity.

Software development
Program preparation is done on a Macintosh using the MPW (Macintosh

Programmer’s Workshop) development system. The system code and application
codes are both developed under MPW. The system code provides a core level of
support that can be enhanced by the addition of local applications (LAs) to
support the specific needs of a given installation. Such LAs may be written by a
user in C or Pascal and, using the MPW tools, compiled and linked with the help
of a small library of glue routines that invoke system code services. The resulting
linker output is downloaded to any local station using the TFTP client also
running as an MPW tool. The code received by the station’s TFTP server is copied
into the non-volatile memory resident file system. Using a page application for
the purpose, a set of parameters are specified to be passed to the LA upon each
invocation. These parameters are constant data that are often Channel#s or
Bit#s, whose present readings determine the course of action of the LA. The first
parameter is always an enable Bit# for the LA. When the enable bit is set, the
system finds the code for the LA in the resident file system and copies it into
allocated dynamic memory for subsequent execution. Every operating cycle,
during Data Access Table processing, each enabled LA is called with the set of
specified parameters. It can perform any short-term activity it needs to
according to its context. The first time it is called, it allocates memory to
maintain its own execution context. A pointer to this context memory is also
passed to the LA each time it is called. An LA that is written to be a network
server can also be invoked upon reception of a network message intended for it.
If the enable bit is turned off, thus disabling the LA, a final call is made to the LA
to allow it to release any resources. An LA can be edited, compiled, linked and
downloaded to a target station without requiring a reset of the station. In the
case that such an LA is already enabled and active at the time of downloading,
the switch to the new version is automatic. Minor program changes can thus be
accomplished in seconds.


